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Abstract

The dynamic stability of the damped Beck’s column on two-parameter elastic foundation is investigated by using

Hermitian beam elements. For this purpose, based on the extended Hamilton’s principle, the dimensionless finite element

(FE) formulation using the Hermitian interpolation function is presented. First, the mass matrix, the external and internal

damping matrices, the elastic and the geometric stiffness matrices, Winkler and Pasternak foundation matrices, and the

load correction stiffness matrix due to the sub-tangential follower force are obtained. Then, evaluation procedure for the

flutter and divergence loads of the non-conservative system and the time history analysis using the Newmark-b method are

shortly described. Finally, the influences of various parameters on the dynamic stability of non-conservative systems are

newly addressed: (1) variation of the second flutter load due to sub-tangentiality, (2) influences of the external and the

internal damping on flutter loads by analysis of complex natural frequencies, (3) the effect of the growth rate of motion in a

finite time interval using time history analysis, and (4) fluctuation of divergence and flutter loads due to Winkler and

Pasternak foundations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In the last 50 years, there have been many studies on the non-conservative systems under the follower force
losing their stability either by divergence or by flutter. For divergence-type instability, the critical loads of the
system can be determined by the static approach, whereas for flutter-type instability, the critical loads should
be determined based on a dynamic criterion. A detailed discussion of this subject and a comprehensive list of
references can be found in the book by Leipholz [1] and an article by Langthjem and Sugiyama [2]. In
addition, it is worth referring two sharp discussions by Koiter [3] and Sugiyama et al. [4] about the nature of
the follower forces.

This problem of instability is often analyzed by using numerical methods such as the finite element
method [5–20]; the transfer matrix approach [21–24]; the lagrangian approach and the assumed mode method
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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by Lee [25–28]; the finite difference method [1,29–32] and many other forms of discretization methods
[33,34].

One of the interesting topics in non-conservative stability problems has been the destabilizing effect of small
damping. If such destabilization occurs, damping must be considered in the formulation of the solution, because a
safe design of the system is possible only when damping is considered. Because all physical systems involve
damping in one form or another, research on the stability of columns subjected to a non-conservative follower
force will be very meaningful. As shown in previous works [2,35,36,10,37–47], the realistic modeling of any
structure must consider and include the damping effect. Ziegler [47] first evaluated the destabilizing effect of
damping by considering a viscoelastic double pendulum model. He found that the critical load for small damping
could be lower than that for no damping. More information about this phenomenon for the double pendulum can
be found in the works of Kounadis and Smities [38] and Kounadis [39]. Krätzig [41] found that for the Beck’s
column, the critical load decreases about 15%more in a damped system, with dissipation ratios of 3% with respect
to the first two eigen-frequencies, than in an undamped one. Bolotin and Zhinzher [44] and Bolotin [45,46]
observed the same behavior for a linear, viscoelastic column. Semler et al. [37] gave the physical explanation of the
destabilizing effect of damping and discussed this effect in reference to a two-degree-of-freedom (dof) articulated
system. Also, an early experimental study by Sugiyama et al. [36] on the dynamic stability of cantilevers under
rocket thrust significantly clarified the destabilizing effect of small internal damping. The theoretical flutter load for
the Beck’s column with small internal damping is about half the flutter load for the undamped column. The
destabilizing effect of damping can be described in terms of the mathematical concept of stability, and asymptotic
stability in an infinite time. Here, the asymptotic stability condition implies that the dynamical system is unstable if
the amplitude of the disturbed motion of the system becomes infinite as time goes to infinity. However in practice,
a follower force caused by a rocket motor can act on elastic structures only for a finite time interval. Knowing this
fact, Ryu and Sugiyama [5] and Sugiyama et al. [35] recently filled the gap between the analytical results obtained
so far of the damping effect and the realistic aspects of the damping effect by using the finite element method. And
the concept of stability in a finite time interval was applied to the study on dynamic stability of the cantilever
column subjected to a follower force.

As for the problems of non-conservative stability analysis of a beam on an elastic foundation,
Smith and Herrmann [48] have shown that the critical flutter load for a cantilever beam is independent
of the foundation modulus for a Bernoulli–Euler beam resting on an elastic foundation. Sundararajan [49] derived
a theorem that states that the critical flutter load does not decrease due to the introduction
of a Winkler-type elastic foundation provided that the modulus distribution of the foundation is geometrically
similar to the mass distribution of the beam. Hauger and Vetter [50] observed that a weakening
of the foundation can improve the stability of the column, whereas a strengthening of it may decrease the
critical load. Elishakoff and Wang [51] presented a generalization of the Smith–Herrmann problem by considering
the attachment of an elastic foundation to a part of the column and Elishakoff and Jacoby [52] investigated the
influence of various types of elastic foundation on the buckling and flutter loads of Ziegler’s model structure. The
stability of tapered cantilever columns resting on an elastic foundation subjected to a concentrated follower force at
the free end was investigated by Venkateswara Rao and Kanaka Raju [53]. Lee et al. [54] and Lee and Yang [55]
investigated the influences of the Winkler elastic foundation modulus and the slenderness ratio on the critical load
of uniform and non-uniform Timoshenko beams, respectively, subjected to a concentrated follower force. The
existing literatures related to the non-conservative stability of a beam on elastic foundation reveal no studies of the
effect of internal damping, except for the study of Lee [26]. However, his study was only restricted to the analysis of
a beam resting on a Winkler-type elastic foundation.

Despite these extensively cited studies for the dynamic stability analysis of the non-conservative systems,
there still remain some margins to investigate the dynamic stability characteristics of columns subjected to
non-conservative follower forces. In this study, finite element method (FEM) is formulated based on the
extended Hamilton’s principle. The effects of the sub-tangentiality of the follower forces, the external and the
internal damping, and the Winkler and Pasternak foundations on the dynamic stability behavior of non-
conservative systems are fully discussed. The important points presented may be summarized as follows:
1.
 The dimensionless FE formulation using Hermitian beam elements is employed to perform a parametric
study of the damped Beck’s column on two-parameter elastic supports.
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2.
 Variation of the second flutter load due to sub-tangential follower force is newly investigated, and the
corresponding stability diagram is presented by analyzing double eigen-curves.
3.
 Stability characteristics due to the Rayleigh damping matrix is rigorously traced by studying complex

natural frequencies of the externally and internally damped non-conservative system.

4.
 The effect of growth rate of motion for a finite time interval on the Beck’s column with external and

internal damping is reported by using time history analysis.

5.
 The effects of Winkler and Pasternak foundations on the divergence and flutter loads of the damped non-

conservativeness system are addressed.

6.
 Finally, the flutter-jump phenomena are observed depending upon the Winkler and Pasternak foundations,

and the external and the internal damping.

2. FE formulation of the non-conservative system

Fig. 1 shows Beck’s columns, in which the direction of the follower force sub-tangentially changes according
to the rotation of the cross sections. For derivation of the equation of motion and the finite element
formulation, we consider a beam-column element (Fig. 2) of length le with element nodal displacements (vp, yp,
vq, yq) and element nodal forces (Sp, Mp, Sq, Mq).

In this study, the kinetic energy PM, the elastic strain energy PE of the system resting on two types of elastic
foundation, the potential energy PG including the work done by the conservative component of the follower
force, and the virtual work dPNC by the non-conservative damping and follower force are considered.
The extended Hamilton’s principle of the column under consideration can be expressed byZ t2

t1

dðPM �PE �PGÞ þ dPNC½ �dt ¼ 0, (1)

where d is variation of energy and each term of which is given as

PM ¼
X

e

1

2

Z le

0

m
qv

qt

� �2

dx, (2a)

PE ¼
X

e

1

2

Z le

0

EI
q2v

qx2

� �2

þ k1v2 þ k2
qv

qx

� �2
( )

dx, (2b)
Fig. 2. Beam-column element under consideration. (a) Element nodal displacements and (b) element nodal forces.

Fig. 1. Beck’s column subjected to a sub-tangential follower force.
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PG ¼ �
X

e

1

2

Z le

0

F
qv

qx

� �2

dx, (2c)

dPNC ¼ �
X

e
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0
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q3v

qt qx2
d
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qx
dvðlÞ, (2d)

where m is the mass per unit length, EI is the flexural rigidity, k1 and k2 are the Winkler and Pasternak
foundation parameters, respectively, and F is the follower force in the Beck’s column. g1 and g2 are the external
and internal damping coefficients, respectively, and a and l are the non-conservativeness parameters denoting
sub-tangentiality and the total length of columns, respectively. For simplicity, the following dimensionless
variables are introduced:

V ¼
v

l
; xn ¼

x

l
; tn ¼

t
ffiffiffiffiffiffiffiffiffiffiffiffi
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p
l2

; k�1 ¼
k1l

4
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2
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,
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l2
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EIm
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ml4

EI

s
o, ð3a2iÞ

where o is the circular frequency.
Using dimensionless variables and taking into account Eq. (1), the extended Hamilton’s principle for finite

element formulation can be written as follows:

d
Z t�

2

t�
1

PC dt� þ

Z t�
2

t�
1

dPNC dt� ¼ 0, (4)

where

PC ¼
1

2

X
e

Z z
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and where z( ¼ le/l) is the dimensionless length of a beam element. As shown in Fig. 2(a), the element model
presented here consists of two nodes, each of which has two dof. The vertical displacement v* of a typical point within
the element can be related to nodal displacements by using the third-order Hermitian interpolation polynomial.

Now substituting the interpolated displacement into Eq. (4), the resulting equation of motion for a single
element is obtained in a matrix form as

Me
€Ue þ Ce

_Ue þ Ke þ Ks þ Kg � Knc

� �
Ue ¼ Fe, (6)

where Ue and Fe are the nodal displacement and force vectors, respectively, Me is the mass matrix, Ce is the
damping matrix, Ke is the elastic stiffness matrix, Ks is the stiffness matrix considering the foundation effects,
Kg is the geometric stiffness matrix due to an axial force, Knc is the load correction stiffness matrix due to the
directional change of non-conservative force. The detailed results of each matrix are presented in the
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Table 1

The flutter loads of Beck’s column

g�1=g
�
2 0 0.1 1 10 100

0 20.05 (20.05) 20.05 20.11 24.28 37.22

0.0001 10.94 (10.94) 19.91 20.11 24.29 37.22

0.001 10.94 (10.94) 17.56 19.98 24.38 37.21

0.01 10.97 (10.97) 12.93 17.80 25.20 37.21

0.1 13.64 (13.64) 14.08 17.33 32.10 37.38

0.2 21.51 (21.53) 21.98 25.86 41.31 37.85

Results in parenthesis are from Nageswara Rao and Venkateswara Rao [30].
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Appendix. Note that the damping matrix Ce due to the external and internal damping is represented by a
linear combination of the mass matrix and the elastic stiffness matrix and resultantly, takes the same form as
the Rayleigh damping matrix [60] as follows:

Ce ¼
g�1z
420

156 22z 54 �13z

4z2 13z �3z2

156 �22z

symm: 4z2

2
66664

3
77775þ

g�2
z3

12 6z �12 6z

4z2 �6z 2z2

12 �6z

symm: 4z2

2
66664

3
77775 ¼ g�1Me þ g�2Ke. (7)

Now using the direct stiffness method, we can obtain the equation of motion for the whole column in matrix
form:

ME
€Uþ CE

_Uþ KE þ KS þ KG � KNCð ÞU ¼ F, (8)
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where ME, CE,KE and KG are, respectively, the mass-, the damping-, the elastic stiffness-, the geometric
stiffness matrices in the global coordinate system. Ks and KNC are the global stiffness matrices considering the
foundation effects and the load correction stiffness matrix due to circulatory forces, respectively.

3. Dynamic stability analysis

In this section, the method evaluating the critical loads of a non-conservative system and the time history
analysis for impulse loads are shortly described. The global stiffness matrix of a system is asymmetric due to
the effect of non-conservative forces, so that the IMSL [56] subroutine, which can provide the complex
eigenvalue of asymmetric matrix equation, is used.

3.1. Divergence and flutter systems without damping

If only the unstable static equilibrium state of a non-conservative system without damping is considered, the
terms corresponding to the mass matrix ME, the damping matrix CE, and the force vector F vanish.
Consequently, the following eigenvalue problem from Eq. (8) can be considered:

KE þ KSð ÞU ¼ l KG � KNCð ÞU, (9)

where l is the proportionality parameter. The critical divergence load F�d of the system is determined by
calculating the eigenvalue l of Eq. (9).i.e., by performing the conventional buckling analysis, although the
system matrix is non-symmetric. Also, for the undamped flutter system, Eq. (8) is simplified to

ME
€Uþ KE þ KS � l KG � KNCð Þ½ �U ¼ 0. (10)

By setting U ¼ eiOt�H, Eq. (10) is reduced to the double eigenvalue problem as

KE þ KS � l KG � KNCð Þ½ �H ¼ O2MEH. (11)

The dynamic stability behaviors of an undamped non-conservative system may be traced by constructing the
double eigen-curve, which shows variation of frequencies O2 with the increase of the follower force l. That is,
O2 becomes the positive real when l is small. But as l increases gradually, the first and the second frequencies
approach each other, and stability is lost when two consecutive eigenvalues of O2 become equal at a finite
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critical value of l. Beyond this value known as the flutter load F�fl, the perturbed motion of the system displays
the diverging oscillations with increasing amplitudes while the critical eigenvalues become complex conjugates.
In this study, the second flutter load as well as the first flutter load is evaluated from the double eigen-curve of
Beck’s column.
3.2. Flutter system with damping

For the damped flutter system, as F vanishes, Eq. (8) can be written as

ME
€Uþ CE

_Uþ KE þ KS � l KG � KNCð Þ½ �U ¼ 0. (12)

By setting the nodal velocity vector ð _U ¼ VÞ as the independent variable, Eq. (12) is transformed into two
simultaneous differential equations of the first order:

ME
_U ¼MEV, (13a)
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ME
_V ¼ �CEV� KE þ KS � l KG � KNCð Þ½ �U. (13b)

Eq. (13) can be next expressed as an eigenvalue problem by putting U ¼ eiOt�Q and V ¼ eiOt�S.

iOAD ¼ BD, (14)

where

A ¼
ME 0

0 ME

" #
; B ¼

0 ME

�KE � KS þ l KG � KNCð Þ �CE

" #
; D ¼ fQ; SgT (15a2c)

In case of the damped non-conservative system with small values of l, the frequency O( ¼ m7Zi) becomes a
complex conjugate, in which m is negative. As l increases gradually, m approaches zero. Finally, instability
occurs when m changes from negative to positive at a finite value of l. This value is called the flutter load F�fl of
the damped system.
0 10 20 30 40 505 15 25 35 45

-1.0x10-4

0.0x100

1.0x10-4

-1.5x10-4

-5.0x10-5

5.0x10-5

1.5x10-4

D
is

p
la

c
e
m

e
n

t,
 v

*

0 10 20 30 40 505 15 25 35 45

-1.0x10-3

0.0x100

1.0x10-3

-1.5x10-3

-5.0x10-4

5.0x10-4

1.5x10-3

D
is

p
la

c
e
m

e
n

t,
 v

*

0 10 20 30 30 505 15 25 54 45

-8

-4

0

4

8

-6

-2

2

6

D
is

p
la

c
e
m

e
n

t,
 v

*

Time, t*

Time, t*

Time, t*

Ω = 1.02×10-4 ± 5.43i, v* = ± 7.19×10-5 exp [1.02×10-4 t*],  
γ1

* =0.0, γ2
* =0.05

Ω = 4.78×10-2 ± 5.55i, v* = ± 6.85×10-5 exp [4.78×10-2 t*],  
γ1

* =0.0, γ2
* =0.05

Ω = 2.22×10-1 ± 5.93i, v* = ± 6.57×10-5 exp [0.22 t*], γ1
* =0.0, γ2

* =0.05

Fig. 11. Response of the column with internal damping. (a) � ¼ F�f 1 ¼ 11:62, (b) � ¼ 1:05F�f 1 ¼ 12:20 and (c) � ¼ 1:2F�f 1 ¼ 13:94.



ARTICLE IN PRESS
J.-S. Lee et al. / Journal of Sound and Vibration 306 (2007) 766–789 777
3.3. Time history analysis of the non-conservative system using Newmark-b method

Instability of the non-conservative system may be investigated via the time history analysis of the perturbed
system subjected to an impulse loading using the Newmark-b method. For this, the equation of motion
accounting for the impulse loading is considered as follows:

ME
€Uþ CE

_Uþ KE þ KS � l KG � KNCð Þ½ �U ¼ IðtÞ, (16)

where I(t) denotes the impulse loading having its magnitude of 0.001F* acting at the end of cantilever during
only the time interval of 0.001 in the dimensionless time domain t* (see Fig. 3).
4. Numerical examples

A parametric study is performed by using the FE analysis. Here, the Beck’s column is modeled by using 10
Hermitian beam elements.
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Fig. 12. Response of the column with external damping. (a) � ¼ F�f 1 ¼ 24:28, (b) � ¼ 1:05F�f 1 ¼ 25:49 and (c) � ¼ 1:2F�f 1 ¼ 29:14.
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Fig. 13. Response of the column with external and internal damping. (a) � ¼ F�f 1 ¼ 28:15, (b) � ¼ 1:05F�f 1 ¼ 29:56 and

(c) � ¼ 1:2F�f 1 ¼ 33:78.

Table 2

Dimensionless natural frequencies of beam on Winkler foundation subjected to an axial force

Mode This study Lee et al. [57] Yokoyama [58]

1 9.87 9.87 9.87

2 37.19 37.19 37.20

3 86.16 86.15 86.27

J.-S. Lee et al. / Journal of Sound and Vibration 306 (2007) 766–789778
4.1. Effect of non-conservativeness parameter: sub-tangentiality

In the first parametric study, the influence of the non-conservativeness parameter a on the divergence and
flutter instabilities of the column is investigated. The instability of the Beck’s column force changing from a
constant direction (a ¼ 0) to a purely tangential one (a ¼ 1), is taken into consideration.

Fig. 4 shows the double eigen-curves of the Beck’s column for the follower force versus the 1st through the
4th frequencies for various values of a. As shown in Fig. 4(b), when 0.0pao0.32, the first instability
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mechanism of the system is the divergence system (DS) and the first and second flutter occur with divergence
at 0.32pao0.5, which corresponds to the divergence-flutter system (DFS). And the pure flutter without
divergence, which means the flutter system (FS), occurs at aX0.5.

Next, the stability diagram for the Beck’s column, which shows the variation of the divergence and flutter
loads with increase of a, are plotted in Fig. 5. Fig. 4 shows that not only the first flutter but also the second
flutter occurs at the load level, in which the first and second frequencies coincide in DFS, while the second
flutter occurs when the third and fourth frequencies become equal in FS. Due to this reason, the second flutter
load in Fig. 5 is discontinuous at a ¼ 0.5, which corresponds to the transition point from DFS to FS.
Moreover, the first and second flutter loads increase with the increase of a, as shown in Fig. 5.

In Fig. 6, the real value m and the imaginary one Z of the frequency O versus the follower force for various
values of a are depicted. Fig. 6(a) shows that when a ¼ 0.5, as the follower force increases, the value of m
decreases to zero, at which buckling occurs and increases up to the occurrence of the first flutter (F�1 ¼ 16:053).
Also, Fig. 6(b) shows that the imaginary value is zero before the occurrence of flutter and increases suddenly
after that. Furthermore, Fig. 6 reconfirms the phenomenon in Fig. 5, in which the flutter load increases with
the increase of a.
4.2. Effect of external and internal (Rayleigh) damping parameters

The second parametric study deals with the effects of the external and the internal damping on the Beck’s
column with a ¼ 1.0. Additionally, the concept of dynamic stability in a finite time interval presented by Ru
and Sugiyama [5] and Sugiyama et al. [35] is applied to the time history analysis.

Under the assumption of Rayleigh damping, the following relation between g�1, g
�
2 and the proportional

damping parameter xi (i ¼ mode number) may be obtained from modal decomposition:

g�1 � g�2O
2
i ¼ 2iOixi; i ¼ 1; 2, (17)

where O1 and O2 are the first and second natural frequencies of the cantilever beam, respectively. Two
damping parameters are obtained by solving Eq. (17):

g�1
g�2

( )
¼

2

O2
1 � O2

2

�O1O2ðO2x1 � O1x2Þi

ðO2x2 � O1x1Þi

( )
. (18)
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Now the practical ranges of g�1 and g�2 values may be approximately determined from Eq. (18) if the suitable
ranges of xi are given.

In Table 1, the flutter loads F�fl for the Beck’s column with various external and internal damping
parameters are presented and compared with the results by Nageswara Rao and Venkateswara Rao [30] based
on the finite difference method. Table 1 shows that the results of this study are in an excellent agreement with
those by Ref. [30]. Also, the flutter loads for the Beck’s column with very small internal damping are
dramatically dropped to about half of those for the undamped columns. Then the flutter loads under no
external damping increase with the increase of internal damping. In the case with small external damping
(g�1 ¼ 0:1 and 1), the flutter loads smoothly decrease to the critical value and then increase with the increase of
Fig. 16. Divergence and flutter instability regions for column subjected to the partially tangential force with various Winkler foundation

parameters.

0 0.2 0.4 0.6 0.8 10.1 0.3 0.5 0.7 0.9

0

40

80

120

160

20

60

100

140

F
o

ll
o

w
e
r 

fo
rc

e
, 
F

*

 0
 5
10
20

Non-conservativeness parameter, α

k2*

Fig. 15. Stability diagrams for the column with Pasternak foundation.



ARTICLE IN PRESS
J.-S. Lee et al. / Journal of Sound and Vibration 306 (2007) 766–789 781
internal damping. Also, the flutter loads increase as the external damping increases for all values of internal
damping. Fluctuation of the imaginary value Z of the frequency with respect to the follower force F* is plotted
to further investigate the effects of damping on flutter loads for a damped Beck’s column. Figs. 7, 8(a) and (b)
show the variation of value Z with respect to the follower force F* for various internal and external dampings
of g�1 ¼ 0:0; 0:1; 1:0, respectively, when a ¼ 1.0. Note that the flutter occurs at the zero value of Z. As can be
seen in Fig. 7(b), the gradient of Z increases as the internal damping increases; therefore, the system with a
small internal damping is weakly unstable. From Figs. 8(a) and (b), it is observed that the curve is shifted
down as the external damping increases. In addition, Fig. 9 shows the variation of the follower forces versus
the internal damping of the column with the constant m for a ¼ 1.0.
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To trace directly the stability behaviors of the non-conservative system, dynamic analysis is carried out by
using the Newmark method. The dynamic responses of the damped Beck’s column subjected to follower forces
of F�f 1, 1:05F�f 1 and 1:2F�f 1 are presented in Figs. 10 through 13, respectively, where the responses are those of
the tip ends of the columns. The horizontal axis is the dimensionless time t*, and the vertical axis is the
dimensionless deflection v*. The horizontal axis t* is kept for 0pt*p50, which may be long enough to observe
the growth of the motion of the column. Here, the imaginary value Z of the complex eigenvalue O for a
specified value of the follower force F* can be referred to as the growth rate index of the motion.

Fig. 10(b) shows that the column (Z ¼ 2.19) under the follower force of 1:05F�f 1 is clearly unstable for no
damping. On the other hand, Fig. 11(a) shows the steady-state motion for mE0 at F�f 1 ¼ 11:62 for the column
with g�1 ¼ 0:0 and g�2 ¼ 0:05. Fig. 11(b) shows the response when F� ¼ 1:05F�f 1. This response (m ¼ 0.0478) is
defined as an unstable motion in the sense of asymptotic stability where the system is considered in the infinite
time interval. The small value of m times an infinite time t* can make a finite growth rate to indicate that the
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system is unstable. However, in the physical aspect of stability in a finite time interval, the response shown in
Fig. 11(b) can be judged as a stable motion since the dimensionless deflection v* is very small. Also, it can be
observed from Fig. 11(c) that the response of the system is a realistic unstable condition with time t* (the
maximum v* ¼ 4.39) for a large value of the follower force. In addition, Figs. 12 and 13 show the dynamic
motion for the column with g�1 ¼ 10:0, g�2 ¼ 0:0 and g�1 ¼ 10:0, g�2 ¼ 0:05, respectively. Figs. 12(b) and 13(b)
corresponding to m ¼ 0.678 and 0.347, respectively, display weakly unstable behaviors.

4.3. Effect of two foundation parameters

In our final parametric study, the influence of the Winkler and Pasternak foundations on the non-
conservative system is investigated. First, to verify the validity of the present element on an elastic foundation,
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the first three dimensionless natural frequencies of the beam, which is under the hinge-roller boundary
condition, for the foundation parameter k�1 ¼ 58:445 and subjected to an axial force F*

¼ 0.6, are presented in
Table 2. For comparison, the solutions by Lee et al. [54] using the dynamic quadrature method and
the results by Yokoyama [56] using the finite element technique based on the Hermitian interpolation
polynomial are presented. Table 2 shows that the solutions by this study are in a good agreement with the
available results.

Figs. 14 and 15 show the stability diagrams of the Beck’s column for various values of Winkler and
Pasternak foundation parameters, respectively, without damping. Researchers [48,49] have shown that the
critical flutter load of a column is independent of the Winkler foundation parameter, as can bee seen in Fig.
14. On the other hand, Fig. 15 shows that the Pasternak-type of foundation increases the flutter as well as the
divergence loads since this foundation increases the flexural stiffness of the system.
Fig. 19. Effect of internal and external damping on the instability region for the column with Winkler foundation. (a) k�1 ¼ 105 and

g�1 ¼ 0:0, (b) k�1 ¼ 105 and g�2 ¼ 0:0.
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Also, the divergence and flutter instability regions for a column subjected to partially tangential force are
presented in Fig. 16 for various Winkler foundation parameters. When the Winkler foundation parameter is
less than and greater than the critical value of the foundation parameter, the instability mechanism changes
from divergence to flutter, and the critical load of the beam will jump upward and downward. According to
the study by Lee et al. [59], the jump phenomenon occurs only at a single point. However, Fig. 16 shows more
than one critical flutter-jumping points. In Fig. 16, the jump phenomena occur when the values of k�1 are 41.45,
10671, 73500, and 267673, respectively, and their corresponding sub-tangentiality are 0.322, 0.141, 0.091, and
0.069, respectively. This can also be explained from the eigen-curves in Fig. 17. The instability mechanism
changes from divergence to flutter by crossing over the turning point (point P in Fig. 16) and its corresponding
value of k�1 is 8526.7 when a ¼ 0.2. Fig. 17 shows that flutter occurs only when the third and fourth frequencies
coalesce. Similarly, for a ¼ 0.1, k�1 ¼ 105, when the fifth and sixth frequencies coalesce, the flutter occurs, and
the flutter load F*

¼ 299 is smaller than the first divergence load F*
¼ 355.8.

Fig. 18 shows the tip displacement as function of time and its frequency spectrum when a ¼ 0.2 and
k�1 ¼ 104, where the critical flutter load is 115.62, so at a lower value than this flutter load, steady oscillation
occurs and the first frequency governs the system. But as the load approaches to the critical point, the third
and fourth frequencies coalesce and its magnitude of coalescent frequency is similar to that of the first
frequency. Then as the load increases beyond the critical load as shown in Fig. 18(d), the coalescent frequency
governs the system stability. Also the flutter-jump depends on the external and the internal damping. Fig.
19(a) shows the internal damping effect on the Beck’s column with Winkler foundation. As shown in Fig.
19(a), the second and the third jump phenomena disappear when 0.0005og2

*o0.0006 and 0.0002og2
*o0.0004,

respectively. The external damping effect is shown in Fig. 19(b). Fig. 19(b) shows that the external damping
increases the critical flutter load of the column and the value of flutter-jumping point.

The influence of the Pasternak foundation on the instability region is depicted in Fig. 20. As the value of the
Pasternak foundation parameter increases, the flutter load increases, as shown in Fig. 15, but the a
corresponding to the occurrence of the flutter-jump decreases.
5. Conclusions

Using FE formulation based on the extended Hamilton’s principle, the influences of the sub-tangentiality
parameter, the external damping, the internal small damping, and the Winkler and Pasternak foundations on
the dynamic stability of the Beck’s column have been investigated. In addition, the effect of the growth rate of
Fig. 20. Effect of Pasternak foundation on the instability region for the column, k1
*
¼ 105.



ARTICLE IN PRESS
J.-S. Lee et al. / Journal of Sound and Vibration 306 (2007) 766–789786
motion in a finite time interval and the effect of Winkler and Pasternak foundations on the non-conservative
systems are reported. The distinction drawn from numerical example is summarized as follows:
1.
 The stability diagram for the Beck’s column shows that the second flutter load is discontinuous at the
transition point (a ¼ 0.5). Also the sub-tangentiality parameter a increases the first and the second flutter
load.
2.
 Effects of the external and the internal damping on the non-conservative system may be effectively
investigated by using the Rayleigh damping matrix. It is clear from the parametric study that the external
damping compensates partly the destabilizing effect of internal damping.
3.
 Time history analysis shows that the real part of the fundamental complex frequency governs the dynamic
stability behaviors of the non-conservative system. In the case of the column with small internal damping, it
becomes positive and very small, which means weakly unstable.
4.
 Dynamic stability behaviors of the non-conservative system considering the external and the internal
damping may be effectively traced by using concept of stability in a finite time interval.
5.
 The Pasternak foundation increases the flutter load as well as the divergence load of the column.

6.
 Particularly, the flutter-jump phenomena are observed depending upon the Winkler, Pasternak

foundations, and the external, and the internal damping.
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Appendix A. Detailed results of matrices Me, Ke, Ks, Kg and Knc

Mass matrix Me:

Me ¼
z

420

156 22z 54 �13z

4z2 13z �3z2

156 �22z

symm: 4z2

2
66664

3
77775, (A.1)

Elastic stiffness matrix Ke:

Ke ¼
1

z3

12 6z �12 6z

4z2 �6z 2z2

12 �6z

symm: 4z2

2
66664

3
77775. (A.2)

Stiffness matrix considering the foundation effects Ks:

Ks ¼
k�1z
420

156 22z 54 �13z

4z2 13z �3z2

156 �22z

symm: 4z2

2
66664

3
77775þ

k�2
30z

36 3z �36 3z

4z2 �3z �z2

36 �3z

symm: 4z2

2
66664

3
77775. (A.3)
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Geometric stiffness matrix due to an axial force Kg:

Kg ¼ �
F�

30z

36 3z �36 3z

4z2 �3z �z2

36 �3z

symm: 4z2

2
66664

3
77775. (A.4)

Load correction stiffness matrix Knc:

Knc ¼ aF�

� � � �

� � � �

� � � 1

� � � �

2
6664

3
7775. (A.5)
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